Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Vaccine ; 41(20): 3258-3265, 2023 05 11.
Article in English | MEDLINE | ID: covidwho-2291899

ABSTRACT

OBJECTIVES: To investigate how BBIBP-CorV vaccination affecting antibody responses upon heterologous Omicron infection. METHODS: 440 Omicron-infected patients were recruited in this study. Antibodies targeting SARS-CoV-2 spike protein receptor binding domain (RBD) and nucleoprotein of both wild-type (WT) and Omicron were detected by ELISA. The clinical relevance was further analyzed. RESULTS: BBIBP-CorV vaccinated patients exhibited higher anti-RBD IgG levels targeting both WT and Omicron than non-vaccinated patients at different stages. By using a 3-day moving average analysis, we found that BBIBP-CorV vaccinated patients exhibited the increases in both anti-WT and Omicron RBD IgG from the onset and reached the plateau at Day 8 whereas those in non-vaccinated patients remained low during the disease. Significant increase in anti-WT RBD IgA was observed only in vaccinated patients. anti-Omicron RBD IgA levels remained low in both vaccinated and non-vaccinated patients. Clinically, severe COVID-19 only occurred in non-vaccinated group. anti-RBD IgG and IgA targeting both WT and Omicron were negatively correlated with virus load, hospitalization days and virus elimination in vaccinated patients. CONCLUSIONS: BBIBP-CorV vaccination effectively reduces the severity of Omicron infected patients. The existence of humoral memory responses established through BBIBP-CorV vaccination facilitates to induce rapid recall antibody responses when encountering SARS-CoV-2 variant infection.


Subject(s)
Antiviral Agents , COVID-19 , Humans , Antibodies, Viral , Antibody Formation , China , COVID-19/prevention & control , Immunoglobulin A , Immunoglobulin G , SARS-CoV-2 , Vaccination , Retrospective Studies
2.
Sens Actuators B Chem ; 381: 133433, 2023 Apr 15.
Article in English | MEDLINE | ID: covidwho-2211457

ABSTRACT

Timely and accurate detection of SARS-CoV-2 variants of concern (VOCs) is urgently needed for pandemic surveillance and control. Great efforts have been made from a mass of scientists in increasing the detection sensitivity and operability, and reducing the turn-around time and cost. Here, we report a nucleic acid testing-based method aiming to detect and discriminate SARS-CoV-2 mutations by combining RT-RPA and CRISPR-Cas12a detecting assays (RRCd). With a detection limit of 10 copies RNA/reaction, RRCd was validated in 194 clinical samples, showing 89% positive predictive agreement and 100% negative predictive agreement, respectively. Critically, using specific crRNAs, representatives of single nucleotide polymorphisms and small deletions in SARS-CoV-2 VOCs including N501Y, T478K and ΔH69-V70 were discriminated by RRCd, demonstrating 100% specificity in clinical samples with C t < 33. The method completes within 65 min and could offer visible results without using any electrical devices, which probably facilitate point-of-care testing of SARS-CoV-2 variants and other epidemic viruses.

3.
Transbound Emerg Dis ; 69(5): e2122-e2131, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2053007

ABSTRACT

The ongoing enzootic circulation of the Middle East respiratory syndrome coronavirus (MERS-CoV) in the Middle East and North Africa is increasingly raising the concern about the possibility of its recombination with other human-adapted coronaviruses, particularly the pandemic SARS-CoV-2. We aim to provide an updated picture about ecological niches of MERS-CoV and associated socio-environmental drivers. Based on 356 confirmed MERS cases with animal contact reported to the WHO and 63 records of animal infections collected from the literature as of 30 May 2020, we assessed ecological niches of MERS-CoV using an ensemble model integrating three machine learning algorithms. With a high predictive accuracy (area under receiver operating characteristic curve = 91.66% in test data), the ensemble model estimated that ecologically suitable areas span over the Middle East, South Asia and the whole North Africa, much wider than the range of reported locally infected MERS cases and test-positive animal samples. Ecological suitability for MERS-CoV was significantly associated with high levels of bareland coverage (relative contribution = 30.06%), population density (7.28%), average temperature (6.48%) and camel density (6.20%). Future surveillance and intervention programs should target the high-risk populations and regions informed by updated quantitative analyses.


Subject(s)
COVID-19 , Middle East Respiratory Syndrome Coronavirus , Animals , COVID-19/epidemiology , COVID-19/veterinary , Camelus , Humans , Machine Learning , SARS-CoV-2
5.
Front Immunol ; 13: 935573, 2022.
Article in English | MEDLINE | ID: covidwho-2022715

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), represents a significant global human health threat. The most effective way to end the pandemic is through timely vaccination. In this study, the receptor-binding domains (RBDs) of Spike protein of the initial strain of SARS-CoV-2 and its variants, B.1.1.7 (Alpha), B.1.351 (Beta), and B.1.617.1 (Kappa), were successfully displayed on the surface of a Saccharomyces cerevisiae strain for development as a vaccine candidate. To rapidly express the recombinant protein and avoid the need for expensive galactose as an inducer, the gal80 gene of S. cerevisiae was knocked out, and the conventional 72-h culture period was thus successfully shortened to 24 h. Mice vaccinated against variant B.1.617.1 showed robust humoral and cellular immune responses. Moreover, the antiserum in the B.1.671.1 group had neutralizing activity against wild-type RBD and high binding titers against RBD mutants of variants B.1.351 and B.1.1.7. Double deglycosylation at N331Q and N343Q resulted in marked reduction of the affinity of RBD binding to angiotensin converting enzyme 2 (ACE2) and escaped antibody neutralization. This study demonstrates that yeast surface display technology can provide an alternative approach to rapid large-scale preparation of promising SARS-CoV-2 vaccine candidates at low cost.


Subject(s)
COVID-19 Vaccines , COVID-19 , Saccharomyces cerevisiae , Spike Glycoprotein, Coronavirus , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Humans , Mice , SARS-CoV-2 , Saccharomyces cerevisiae/metabolism , Spike Glycoprotein, Coronavirus/biosynthesis
8.
Infect Dis Poverty ; 10(1): 66, 2021 May 08.
Article in English | MEDLINE | ID: covidwho-1220374

ABSTRACT

BACKGROUND: The ongoing transmission of the Middle East respiratory syndrome coronavirus (MERS-CoV) in the Middle East and its expansion to other regions are raising concerns of a potential pandemic. An in-depth analysis about both population and molecular epidemiology of this pathogen is needed. METHODS: MERS cases reported globally as of June 2020 were collected mainly from World Health Organization official reports, supplemented by other reliable sources. Determinants for case fatality and spatial diffusion of MERS were assessed with Logistic regressions and Cox proportional hazard models, respectively. Phylogenetic and phylogeographic analyses were performed to examine the evolution and migration history of MERS-CoV. RESULTS: A total of 2562 confirmed MERS cases with 150 case clusters were reported with a case fatality rate of 32.7% (95% CI: 30.9‒34.6%). Saudi Arabia accounted for 83.6% of the cases. Age of ≥ 65 years old, underlying conditions and ≥ 5 days delay in diagnosis were independent risk factors for death. However, a history of animal contact was associated with a higher risk (adjusted OR = 2.97, 95% CI: 1.10-7.98) among female cases < 65 years but with a lower risk (adjusted OR = 0.31, 95% CI: 0.18-0.51) among male cases ≥ 65 years old. Diffusion of the disease was fastest from its origin in Saudi Arabia to the east, and was primarily driven by the transportation network. The most recent sub-clade C5.1 (since 2013) was associated with non-synonymous mutations and a higher mortality rate. Phylogeographic analyses pointed to Riyadh of Saudi Arabia and Abu Dhabi of the United Arab Emirates as the hubs for both local and international spread of MERS-CoV. CONCLUSIONS: MERS-CoV remains primarily locally transmitted in the Middle East, with opportunistic exportation to other continents and a potential of causing transmission clusters of human cases. Animal contact is associated with a higher risk of death, but the association differs by age and sex. Transportation network is the leading driver for the spatial diffusion of the disease. These findings how this pathogen spread are helpful for targeting public health surveillance and interventions to control endemics and to prevent a potential pandemic.


Subject(s)
Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Adult , Aged , Animals , Evolution, Molecular , Female , Humans , Logistic Models , Male , Middle Aged , Middle East Respiratory Syndrome Coronavirus/isolation & purification , Molecular Epidemiology , Mortality , Phylogeny , Saudi Arabia/epidemiology , Survival Analysis , Zoonoses/epidemiology , Zoonoses/virology
9.
Sci Bull (Beijing) ; 66(22): 2297-2311, 2021 Nov 30.
Article in English | MEDLINE | ID: covidwho-1065574

ABSTRACT

The pandemic due to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of coronavirus disease 2019 (COVID-19), has caused immense global disruption. With the rapid accumulation of SARS-CoV-2 genome sequences, however, thousands of genomic variants of SARS-CoV-2 are now publicly available. To improve the tracing of the viral genomes' evolution during the development of the pandemic, we analyzed single nucleotide variants (SNVs) in 121,618 high-quality SARS-CoV-2 genomes. We divided these viral genomes into two major lineages (L and S) based on variants at sites 8782 and 28144, and further divided the L lineage into two major sublineages (L1 and L2) using SNVs at sites 3037, 14408, and 23403. Subsequently, we categorized them into 130 sublineages (37 in S, 35 in L1, and 58 in L2) based on marker SNVs at 201 additional genomic sites. This lineage/sublineage designation system has a hierarchical structure and reflects the relatedness among the subclades of the major lineages. We also provide a companion website (www.covid19evolution.net) that allows users to visualize sublineage information and upload their own SARS-CoV-2 genomes for sublineage classification. Finally, we discussed the possible roles of compensatory mutations and natural selection during SARS-CoV-2's evolution. These efforts will improve our understanding of the temporal and spatial dynamics of SARS-CoV-2's genome evolution.

10.
Int J Infect Dis ; 103: 540-548, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-965487

ABSTRACT

OBJECTIVES: This study intended to investigate the dynamics of anti-spike (S) IgG and IgM antibodies in COVID-19 patients. METHODS: Anti-S IgG/IgM was determined by a semi-quantitative fluorescence immunoassay in the plasma of COVID-19 patients at the manifestation and rehabilitation stages. The immunoreactivity to full-length S proteins, C-terminal domain (CTD), and N-terminal domain (NTD) of S1 fragments were determined by an ELISA assay. Clinical properties at admission and discharge were collected simultaneously. RESULTS: The positive rates of anti-S IgG/IgM in COVID-19 patients were elevated after rehabilitation compared to the in-patients. Anti-S IgG and IgM were not apparent until day 14 and day ten, respectively, according to Simple Moving Average analysis with five days' slide window deduction. More than 90% of the rehabilitation patients exhibited IgG and IgM responses targeting CTD-S1 fragments. Decreased total peripheral lymphocytes, CD4+ and CD8+ T cell counts were seen in COVID-19 patients at admission and recovered after the rehabilitation. CONCLUSIONS: Anti-S IgG and IgM do not appear at the onset with the decrease in T cells, making early serological screening less significant. However, the presence of high IgG and IgM to S1-CTD in the recovered patients highlights humoral responses after SARS-CoV-2 infection, which might be associated with efficient immune protection in COVID-19 patients.


Subject(s)
Antibodies, Viral/blood , COVID-19/diagnosis , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , Aged , Aged, 80 and over , COVID-19 Testing , Female , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Male , Middle Aged
11.
EBioMedicine ; 61: 103036, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-844322

ABSTRACT

BACKGROUND: Real-time reverse transcription-PCR (rRT-PCR) has been the most effective and widely implemented diagnostic technology since the beginning of the COVID-19 pandemic. However, fuzzy rRT-PCR readouts with high Ct values are frequently encountered, resulting in uncertainty in diagnosis. METHODS: A Specific Enhancer for PCR-amplified Nucleic Acid (SENA) was developed based on the Cas12a trans-cleavage activity, which is specifically triggered by the rRT-PCR amplicons of the SARS-CoV-2 Orf1ab (O) and N fragments. SENA was first characterized to determine its sensitivity and specificity, using a systematic titration experiment with pure SARS-CoV-2 RNA standards, and was then verified in several hospitals, employing a couple of commercial rRT-PCR kits and testing various clinical specimens under different scenarios. FINDINGS: The ratio (10 min/5 min) of fluorescence change (FC) with mixed SENA reaction (mix-FCratio) was defined for quantitative analysis of target O and N genes, and the Limit of Detection (LoD) of mix-FCratio with 95% confidence interval was 1.2≤1.6≤2.1. Totally, 295 clinical specimens were analyzed, among which 21 uncertain rRT-PCR cases as well as 4 false negative and 2 false positive samples were characterized by SENA and further verified by next-generation sequencing (NGS). The cut-off values for mix-FCratio were determined as 1.145 for positive and 1.068 for negative. INTERPRETATION: SENA increases both the sensitivity and the specificity of rRT-PCR, solving the uncertainty problem in COVID-19 diagnosis and thus providing a simple and low-cost companion diagnosis for combating the pandemic. FUNDING: Detailed funding information is available at the end of the manuscript.


Subject(s)
Bacterial Proteins/metabolism , Betacoronavirus/genetics , CRISPR-Associated Proteins/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Endodeoxyribonucleases/metabolism , RNA, Viral/metabolism , Real-Time Polymerase Chain Reaction/methods , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/pathology , Coronavirus Infections/virology , Coronavirus Nucleocapsid Proteins , Humans , Limit of Detection , Nasal Cavity/virology , Nucleic Acid Amplification Techniques/methods , Nucleic Acid Amplification Techniques/standards , Nucleocapsid Proteins/genetics , Nucleocapsid Proteins/metabolism , Pandemics , Phosphoproteins , Pneumonia, Viral/diagnosis , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Polyproteins , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction/standards , Reference Standards , SARS-CoV-2 , Viral Proteins/genetics , Viral Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL